2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Fifth Semester B.E. Degree Examination, December 2011 **Analog Communication**

Time: 3 hrs. Max. Marks:100

> Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part.

- 2. Missing data be suitably assumed.
- 3. Standard notations are used.
- 4. Draw neat diagrams, wherever necessary.

PART - A

- a. Define autocorrelation function of the process X(t). Explain the properties of autocorrelation function. (06 Marks)
 - b. Define Gaussian process. Explain the properties of Gaussian process. (06 Marks)
 - c. Let X be a continuous random variable having a uniform probability distribution defined in the range $2 \le x \le 4$. Let y = (3x + 2). Find the means m_x and m_y . (08 Marks)
- Explain with block diagram the coherent detection of conventional AM waves. Explain 2 frequency error and phase error in this method. (08 Marks)
 - b. Explain with block diagrams, quadrature carries multiplexing and demultiplexing systems. (06 Marks)
 - c. An audio frequency signal (10 Sin $2\pi \times 500$ t) volts is used to amplitude modulate a carrier of (50 Sin 2 $\pi \times 10^5$) volts. Assume modulation index = 0.2. Find the following:
 - Sideband frequencies i)
 - Amplitude of each side band frequencies ii)
 - B.W. required.

(06 Marks)

3 Obtain time domain description of SSB – SC wane.

- (08 Marks)
- Explain with block diagram a balanced modulator for the generation of DSB-SC. (06 Marks) b.
- Define Hilbert transform. Obtain Hilbert transform of the following:
 - $x(t) = (\cos 2\pi ft + \sin 2\pi ft)$ i)
 - $x(t) = e^{-j2\pi ft}.$ ii)

(06 Marks)

- What is frequency division multiplexing in (FDM)? Explain with a block diagram FDM a. (06 Marks) system.
 - b. Explain with a block diagram, superheterodyne recervier. Mention the merits of (08 Marks) superheterodyne receiver over Tuned Radio Frequency receiver (TRF). (06 Marks)
 - c. Write a short note on vestigial side band modulation (USB).

PART - B

- With a neat block diagram, explain direct method of generating FM wave. Discuss how wide 5 band FM (WBFM) can be generated using this method. (08 Marks)
 - b. Compare AM and FM systems.

- c. A 93.2 MHz carrier is frequency modulated by a 5 kHz sine wave. The resultant FM signal has a frequency derivation of 40 kHz.
 - i) Find the carrier swing of the FM signal.
 - ii) What are the highest and lowest frequencies attained by the frequency modulated signal?
 - iii) Calculate the modulation index for the wave.

(06 Marks)

- 6 a. Explain with circuit diagram and necessary waveform, a FM slope detector. (08 Marks)
 - b. Explain FM demodulation using PLL.

(08 Marks)

c. Write short notes on nonlinear effects in FM systems.

(04 Marks)

- 7 a. What is a thermal noise? List the properties of thermal noise and briefly explain. (06 Marks)
 - b. Define white noise. Plot Power Spectral Density (PSD) and Auto Correlation Function (ACF) of white noise. (06 Marks)
 - c. An amplifier 1 has a noise figure of 9dB and power gain of 15 dB. It is connected in cascade to the other amplifier 2 with noise figure of 20 dB. Calculate the overall noise figure for this cascade connection. (08 Marks)
- 8 a. Obtain the figure of merit of noise in DSB SC receiver.

(08 Marks)

- b. Write short notes on:
 - i) Pre-emphasis
 - ii) De-emphasis
 - iii) Amplitude limiters in FM system.

(12 Marks)